## Publications

A Globally Asymptotically Stable Polynomial Vector Field with Rational Coefficients and no Local Polynomial Lyapunov Function.
,
2018.
To appear in Systems & Control Letters.
[Arxiv]

We give an explicit example of a two-dimensional polynomial vector field of degree seven that has rational coefficients, is globally asymptotically stable, but does not admit an analytic Lyapunov function even locally.

On Algebraic Proofs of Stability for Homogeneous Vector Fields.
,
2018.
Submitted.
[Arxiv]
[Poster]
[Slides]

We prove that if a homogeneous, continuously differentiable vector field is asymptotically stable, then it admits a Lyapunov function which is the ratio of two polynomials (i.e., a rational function). We further show that when the vector field is polynomial, the Lyapunov inequalities on both the rational function and its derivative have sums of squares certificates and hence such a Lyapunov function can always be found by semidefinite programming. This generalizes the classical result that an asymptotically stable linear system admits a quadratic Lyapunov function which satisfies a certain linear matrix inequality. In addition to homogeneous vector fields, the result can be useful for showing local asymptotic stability of non-homogeneous systems, by proving asymptotic stability of their lowest order homogeneous component. We show that in absence of homogeneity, globally asymptotically stable polynomial vector fields may fail to admit a rational Lyapunov function, and that in presence of homogeneity, the degree of the numerator of a rational Lyapunov function may need to be arbitrarily high (even for vector fields of fixed degree and dimension). On the other hand, we also give a family of homogeneous polynomial vector fields that admit a low-degree rational Lyapunov function but necessitate polynomial Lyapunov functions of arbitrarily high degree. This shows the potential benefits of working with rational Lyapunov functions, particularly as the ones whose existence we guarantee have structured denominators and are not more expensive to search for than polynomial ones.

Time-Varying Semidefinite Programs.
,
2018.
Submitted.
[Arxiv]
[Slides]

We study time-varying semidefinite programs (TV-SDPs), which are semidefinite programs whose data (and solutions) are functions of time. Our focus is on the setting where the data varies polynomially with time. We show that under a strict feasibility assumption, restricting the solutions to also be polynomial functions of time does not change the optimal value of the TV-SDP. Moreover, by using a Positivstellensatz on univariate polynomial matrices, we show that the best polynomial solution of a given degree to a TV-SDP can be found by solving a semidefinite program of tractable size. We also provide a sequence of dual problems which can be cast as SDPs and that give upper bounds on the optimal value of a TV-SDP (in maximization form). We prove that under a boundedness assumption, this sequence of upper bounds converges to the optimal value of the TV-SDP. Under the same assumption, we also show that the optimal value of the TV-SDP is attained. We demonstrate the efficacy of our algorithms on a maximum-flow problem with time-varying edge capacities, a wireless coverage problem with time-varying coverage requirements, and on bi-objective semidefinite optimization where the goal is to approximate the Pareto curve in one shot.